A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay.
نویسندگان
چکیده
In this work, a simple and versatile microfluidic cell density gradient generator was successfully developed for cytotoxicity of quantum dots (QDs) assay. The microfluidic cell density gradient generator is composed of eight parallel channels which are respectively surrounded by 1-8 microwells with optimized length and width. The cells fall into microwells by gravity and the cell densities are obviously dependent of microwell number. In a case study, HepG2 and MCF-7 cells were successfully utilized for generating cell density gradients on the microfluidic chip. The microfluidic cell density gradient generator was proved to be easily handled, cell-friendly and could be used to conduct the subsequent cell-based assay. As a proof-of-concept, QD cytotoxicity was evaluated and the results exhibited obvious cell density-dependence. For comparison, QD cytotoxicity was also investigated with a series of cell densities infused by pipette tips. Higher reproducibility was observed on the microfluidic cell density gradient generator and cell density was demonstrated to be a vital factor in cytotoxic study. With higher efficiency, controllability and reproducibility, the microfluidic cell density gradient generator could be integrated into microfluidic analysis systems to promote chip-based biological assay.
منابع مشابه
Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملSILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملRestricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films
The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2013